A singularly perturbed convection–diffusion problem with a moving pulse
نویسندگان
چکیده
منابع مشابه
A singularly perturbed convection – diffusion problem with a moving interior layer ∗
A singularly perturbed parabolic equation of convection-diffusion type with an interior layer in the initial condition is studied. The solution is decomposed into a discontinuous regular component, a continuous outflow boundary layer component and a discontinuous interior layer component. A priori parameter-explicit bounds are derived on the derivatives of these three components. Based on these...
متن کاملQuasilinear singularly perturbed problem with boundary perturbation.
A class of quasilinear singularly perturbed problems with boundary perturbation is considered. Under suitable conditions, using theory of differential inequalities we studied the asymptotic behavior of the solution for the boundary value problem.
متن کاملInterior spikes of a singularly perturbed Neumann problem with potentials
where Ø is a smooth bounded domain of R with external normal ν, N ≥ 3, 1 < p < (N + 2)/(N − 2), J : R → R and V : R → R are C functions. In [5], the first author, extending the classical results by Ni and Takagi, in [3, 4], proved that there exist solutions of (1) that concentrate at maximum and minimum points of a suitable auxiliary function defined on the boundary ∂Ø and depending only on J a...
متن کاملExperiments with a Shishkin Algorithm for a Singularly Perturbed Quasilinear Parabolic Problem with a Moving Interior Layer
In Russ. Acad. Dokl. Math., 48, 1994, 346–352, Shishkin presented a numerical algorithm for a quasilinear time dependent singularly perturbed differential equation, with an internal layer in the solution. In this paper, we implement this method and present numerical results to illustrate the convergence properties of this numerical method.
متن کاملA Uniformly Accurate Collocation Method for a Singularly Perturbed Problem
A semilinear singularly perturbed reaction-diffusion problem is considered and the approximate solution is given in the form of a quadratic polynomial spline. Using the collocation method on a simple piecewise equidistant mesh, an approximation almost second order uniformly accurate in small parameter is obtained. Numerical results are presented in support of this result. AMS Mathematics Subjec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2017
ISSN: 0377-0427
DOI: 10.1016/j.cam.2017.03.003